Direct Observation of Oligomerization by Single Molecule Fluorescence Reveals a Multistep Aggregation Mechanism for the Yeast Prion Protein Ure2
نویسندگان
چکیده
The self-assembly of polypeptides into amyloid structures is associated with a range of increasingly prevalent neurodegenerative diseases as well as with a select set of functional processes in biology. The phenomenon of self-assembly results in species with dramatically different sizes, from small oligomers to large fibrils; however, the kinetic relationship between these species is challenging to characterize. In the case of prion aggregates, these structures can self-replicate and act as infectious agents. Here we use single molecule spectroscopy to obtain quantitative information on the oligomer populations formed during aggregation of the yeast prion protein Ure2. Global analysis of the aggregation kinetics reveals the molecular mechanism underlying oligomer formation and depletion. Quantitative characterization indicates that the majority of Ure2 oligomers are relatively short-lived, and their rate of dissociation is much higher than their rate of conversion into growing fibrils. We identify an initial metastable oligomer, which can subsequently convert into a structurally distinct oligomer, which in turn converts into growing fibrils. We also show that fragmentation is responsible for the autocatalytic self-replication of Ure2 fibrils, but that preformed fibrils do not promote oligomer formation, indicating that secondary nucleation of the type observed for peptides and proteins associated with neurodegenerative disease does not occur at a significant rate for Ure2. These results establish a framework for elucidating the temporal and causal relationship between oligomers and larger fibrillar species in amyloid forming systems, and provide insights into why functional amyloid systems are not toxic to their host organisms.
منابع مشابه
Folding of the yeast prion protein Ure2: kinetic evidence for folding and unfolding intermediates.
The Saccharomyces cerevisiae non-Mendelian factor [URE3] propagates by a prion-like mechanism, involving aggregation of the chromosomally encoded protein Ure2. The N-terminal prion domain (PrD) of Ure2 is required for prion activity in vivo and amyloid formation in vitro. However, the molecular mechanism of the prion-like activity remains obscure. Here we measure the kinetics of folding of Ure2...
متن کاملNovel glutaredoxin activity of the yeast prion protein Ure2 reveals a native-like dimer within fibrils.
Ure2 is the protein determinant of the Saccharomyces cerevisiae prion [URE3]. Ure2 has structural similarity to glutathione transferases, protects cells against heavy metal and oxidant toxicity in vivo, and shows glutathione-dependent peroxidase activity in vitro. Here we report that Ure2 (which has no cysteine residues) also shows thiol-disulfide oxidoreductase activity similar to that of glut...
متن کاملNew insights into the molecular mechanism of amyloid formation from cysteine scanning.
Our laboratory recently reported the identification of a peptide region, QVNI, within the prion domain of the yeast protein Ure2 that may act as an initiation point for fibril formation.(1) This potential amyloid-forming region, which corresponds to residues 18-21 of Ure2, was initially identified by systematic cysteine scanning of the Ure2 prion domain. The point mutant R17C, and the correspon...
متن کاملCopper-induced structural conversion templates prion protein oligomerization and neurotoxicity
Prion protein (PrP) misfolding and oligomerization are key pathogenic events in prion disease. Copper exposure has been linked to prion pathogenesis; however, its mechanistic basis is unknown. We resolve, with single-molecule precision, the molecular mechanism of Cu(2+)-induced misfolding of PrP under physiological conditions. We also demonstrate that misfolded PrPs serve as seeds for templated...
متن کاملPrion Domain of Yeast Ure2 Protein Adopts a Completely Disordered Structure: A Solid-Support EPR Study
Amyloid fibril formation is associated with a range of neurodegenerative diseases in humans, including Alzheimer's, Parkinson's, and prion diseases. In yeast, amyloid underlies several non-Mendelian phenotypes referred to as yeast prions. Mechanism of amyloid formation is critical for a complete understanding of the yeast prion phenomenon and human amyloid-related diseases. Ure2 protein is the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 140 شماره
صفحات -
تاریخ انتشار 2018